Design and Packaging of an Iron- Gallium (galfenol) Nanowire Acoustic Sensor for Underwater Applications
نویسندگان
چکیده
Title of Document: DESIGN AND PACKAGING OF AN IRONGALLIUM (GALFENOL) NANOWIRE ACOUSTIC SENSOR FOR UNDERWATER APPLICATIONS Rupal Jain, Master of Science, 2007 Directed By: Associate Professor F. Patrick McCluskey, Department of Mechanical Engineering A novel acoustic sensor incorporating cilia-like nanowires made of magnetostrictive irongallium (Galfenol) alloy has been designed and fabricated using micromachining techniques. The sensor and its package design are analogous to the structural design and the transduction process of a human-ear cochlea. The nanowires are sandwiched between a flexible membrane and a fixed membrane similar to the cilia between basilar and tectorial membranes in the cochlea. The stress induced in the nanowires due to the motion of the flexible membrane in response to acoustic waves results in a change in the magnetic flux in the nanowires. These changes in the magnetic flux are converted into electrical voltage changes by a GMR (giant magnetoresistive) sensor. As the acoustic sensor is designed for underwater applications, packaging is a key issue for the effective working of this sensor. A good package should provide a suitably protective environment to the sensor, while allowing sound waves to reach the sensing element with a minimal attenuation. In this thesis, design efforts aimed at producing this MEMS bio-inspired acoustic transducer have been detailed along with the process sequence for its fabrication. Package materials including encapsulants and filler fluids have been identified based on their acoustic performance in water by conducting several experiments to compare their impedance and attenuation characteristics and moisture absorption properties. Preliminary test results of the sensor without nanowires demonstrate the process is practical for constructing a nanowire based acoustic sensor, yielding potential benefits for SONAR applications and hearing implants. DESIGN AND PACKAGING OF AN IRON-GALLIUM (GALFENOL) NANOWIRE ACOUSTIC SENSOR FOR UNDERWATER APPLICATIONS
منابع مشابه
A Priority-based Routing Algorithm for Underwater Wireless Sensor Networks (UWSNs)
Advances in low-power electronics design and wireless communication have enabled the development of low cost, low power micro-sensor nodes. These sensor nodes are capable of sensing, processing and forwarding which have many applications such as underwater networks. In underwater wireless sensor networks (UWSNs) applications, sensors which are placed in underwater environments and predicted ena...
متن کاملEffect of Underwater Ambient Noise on Quadraphase Phase-shift Keying Acoustic Sensor Network Links in Extremely Low Frequency Band
This study evaluates the impact of underwater ambient noise using seven real noise samples; Dolphin, Rain, Ferry, Sonar, Bubbles, Lightning, and Outboard Motor in three frequency ranges in extremely low frequency (ELF) band. The ELF band is the most significant bandwidth for underwater long-range communication. ELF band which is extended from 3 to 3000 Hz clearly, faces bandwidth limitation. Me...
متن کاملA Secure Routing Algorithm for Underwater Wireless Sensor Networks
Recently, underwater Wireless Sensor Networks (UWSNs) attracted the interest of many researchers and the past three decades have held the rapid progress of underwater acoustic communication. One of the major problems in UWSNs is how to transfer data from the mobile node to the base stations and choosing the optimized route for data transmission. Secure routing in UWSNs is necessary for packet d...
متن کاملDesign, manufacture and the evaluation of Fluvial Acoustic Tomography System (FATS)
Underwater Acoustic Tomography (AT) system transmits acoustic waves into the water. The AT systems continuously measure the physical characteristics of the flow in rivers, seas and the oceans. The AT systems are synchronized via a GPS clock connectied to the satellites. Hence, the systems transmit the acoustic waves at the same time. The systems record the arrival time of acoustic waves. After ...
متن کاملParallel implementation of underwater acoustic wave propagation using beamtracing method on graphical processing unit
The mathematical modeling of the acoustic wave propagation in seawater is the basis for realizing goals such as, underwater communication, seabed mapping, advanced fishing, oil and gas exploration, marine meteorology, positioning and explore the unknown targets within the water. However, due to the existence of various physical phenomena in the water environment and the various conditions gover...
متن کامل